Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002386

RESUMO

During the COVID-19 (coronavirus disease 2019) outbreak, many people were infected, and the symptoms may persist for several weeks or months for recovering patients. This is also known as "long COVID" and includes symptoms such as fatigue, joint pain, muscle pain, et cetera. The COVID-19 virus may trigger hyper-inflammation associated with cytokine levels in the body. COVID-19 can trigger inflammation in the joints, which can lead to osteoarthritis (OA), while long-term COVID-19 symptoms may lead to joint damage and other inflammation problems. According to several studies, sesame has potent anti-inflammatory properties due to its major constituent, sesamin. This study examined sesamin's anti-inflammatory, anti-osteoarthritis, and anti-COVID-19 effects. Moreover, in vivo and in vitro assays were used to determine sesamin's anti-inflammatory activity against the RAW264.7 and SW1353 cell lines. Sesamin had a dose-dependent effect (20 mg/kg) in a monoiodoacetic acid (MIA)-induced osteoarthritis rat model. Sesamin reduced paw swelling and joint discomfort. In addition, the findings indicated that sesamin suppressed the expression of iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) in the RAW264.7 cell line within the concentration range of 6.25-50 µM. Furthermore, sesamin also had a suppressive effect on MMP (matrix metalloproteinase) expression in chondrocytes and the SW1353 cell line within the same concentration range of 6.25-50 µM. To examine the anti-viral activity, an in silico analysis was performed to evaluate sesamin's binding affinity with SARS-CoV-2 RdRp (severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase) and human ACE2 (angiotensin-converting enzyme 2). Compared to the controls, sesamin exhibited strong binding affinities towards SARS-CoV-2 RdRp and human ACE2. Furthermore, sesamin had a higher binding affinity for the ACE2 target protein. This study suggests that sesamin shows potential anti-SARS-CoV-2 activity for drug development.

2.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051508

RESUMO

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

3.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36405420

RESUMO

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

4.
J Taiwan Inst Chem Eng ; 135: 104365, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35578714

RESUMO

Background: Traditional Chinese medicine (TCM) has been used as an "immune booster" for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.g., anti-oxidant and anti-inflammatory properties). As prior works revealed, the efficacy of Parkinson's medicines and antiviral flavonoid herbs was strongly governed by their bioenergy-stimulating proficiency. Methods: Herbal extracts were prepared by using a traditional Chinese decoction pot. After filtration and evaporation, crude extracts were used to prepare sample solutions for various bioassays. The phytochemical content and bioactivities of AHEs were determined via ELISA microplate reader. Microbial fuel cells (MFCs) were used as a novel platform to evaluate bioenergy contents with electron-transfer characteristics for antiviral drug development. Significant findings: Regarding 18 TCM herbal extracts for the prevention of SARS and H1N1 influenza, comparison on total polyphenol, flavonoid, condensed tannins and polysaccharides were conducted. Moreover, considerable total flavonoid contents were detected for 11 herb extracts. These AEHs were not only rich in phytonutrient contents but also plentiful in anti-oxidant and anti-inflammatory activities. Herbs with high polyphenol content had higher antioxidant activity. Forsythia suspensa extract expressed the highest inhibition against nitric oxide production for anti-inflammation. MFC bioenergy-stimulating studies also revealed that top ranking COVID-19 efficacious herbs were both bioenergy driven and electron mediated. That is, electron transfer-controlled bioenergy extraction was significant to antiviral characteristics for anti-COVID-19 drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...